The light variations of the classical T Tauri star (CTTS) SU Aurigae (HD 282642: G2 Ie: $V = +9.20$ mag; $B-V = +0.13$) are observed frequently and deviate significantly from the average (Plotted as a dotted line in the top panel, $r = 0.3$). Either the possible cause is a slowly varying component in the light due to the photometrically observed events. Two previous spectroscopic studies of SU Aur have shown remarkable spectral variability (see Giampapa et al., 1993; Johns & Basri, 1995; Petrov et al., 2000), we believe that these eclipse-like events most probably due to the obscuration of the stellar surface by material within the circumstellar environment. A possible correlation of these events with the spectroscopic observations is possible. These studies can produce possible correlations in spectral changes due to the photometrically observed events.

Two high-dispersion echelle spectra were taken with the 4m Blanco telescope at CTIO during two different observing runs. Simultaneously, Stromgren uvy photometry of SU Aurigae was obtained. With this combination, we are able to compare the mean light measurements, which show a dramatic eclipse event, with the spectroscopic observations. The model can produce possible correlations in spectral changes due to the photometrically observed events.

In the lower panel of the figure, the differences in the two spectra are evident. The model can produce possible correlations in spectral changes due to the photometrically observed events.

In the lower panel of the figure, the differences in the two spectra are evident. The model can produce possible correlations in spectral changes due to the photometrically observed events.

Shown in the figure on the right is the spectral region around H$_\alpha$. Notice the considerable departures for the "Eclipsed" spectra (red curve) and the one obtained outside of appreciable photographic obscuration (blue). For the "Eclipsed" spectra, the blueshifted H$_\alpha$ line profiles, with a broad red absorption feature. The two spectra are remarkably similar with the exception of the H$_\alpha$ region.

Shown in the figure on the right is the spectral region around H$_\alpha$. Notice the considerable departures for the "Eclipsed" spectra (red curve) and the one obtained outside of appreciable photographic obscuration (blue). For the "Eclipsed" spectra, the blueshifted H$_\alpha$ line profiles, with a broad red absorption feature. The two spectra are remarkably similar with the exception of the H$_\alpha$ region.

In the lower panel of the figure, the differences in the two spectra are evident. The model can produce possible correlations in spectral changes due to the photometrically observed events.

Shown in the figure on the right is the spectral region around H$_\alpha$. Notice the considerable departures for the "Eclipsed" spectra (red curve) and the one obtained outside of appreciable photographic obscuration (blue). For the "Eclipsed" spectra, the blueshifted H$_\alpha$ line profiles, with a broad red absorption feature. The two spectra are remarkably similar with the exception of the H$_\alpha$ region.

Shown in the figure on the right is the spectral region around H$_\alpha$. Notice the considerable departures for the "Eclipsed" spectra (red curve) and the one obtained outside of appreciable photographic obscuration (blue). For the "Eclipsed" spectra, the blueshifted H$_\alpha$ line profiles, with a broad red absorption feature. The two spectra are remarkably similar with the exception of the H$_\alpha$ region.

In the lower panel of the figure, the differences in the two spectra are evident. The model can produce possible correlations in spectral changes due to the photometrically observed events.